

Bilirrubina Auto Total FS*

Reactivo para la determinación cuantitativa *In Vitro* de la bilirrubina total en suero o plasma en equipos fotométricos

Información de Pedido

Nº de pedido	Tam	año del envas	se			
1 0811 99 10 021	R1	5 x 20 mL	+	R2	1 x	25 mL
1 0811 99 10 026	R1	5 x 80 mL	+	R2	1 x	100 mL
1 0811 99 10 023	R1	1 x 800 mL	+	R2	1 x	200 mL
1 0811 99 10 704	R1	8 x 50 mL	+	R2	8 x	12,5 mL
1 0811 99 10 917	R1	8 x 60 mL	+	R2	8 x	15 mL
1 0811 99 10 191	R1	4 x 36 mL	+	R2	4 x	9 mL
1 0811 99 10 940	R1	8 x 60 mL	+	R2	8 x	15 mL
1 0811 99 90 314	R1	10 x 20 mL	+	R2	2 x	30 mL

Resumen [1,2]

La bilirrubina es un producto de la degradación de la hemoglobina. La bilirrubina libre, no conjugada es sumamente apolar y casi insoluble en agua, formando así un complejo con la albúmina para el transporte en la sangre desde el bazo hasta el hígado. En el hígado, la bilirrubina se conjuga con el ácido glucurónico y el complejo resultante bilirrubina-glucorónico soluble en agua es excretado por los conductos biliares.

La hiperbilirrubinemia puede ser causada por producción incrementada de bilirrubina debido a hemólisis (ictericia pre-hepática), por daños parenquimales del hígado (ictericia intra-hepática) o por la oclusión de los conductos biliares (ictericia post-hepática). hiperbilirrubinemia crónica congénita (predominantemente no conjugada) llamada síndrome de Gilbert es bastante frecuente en la población. Niveles elevados de bilirrubina total son observados en el 60 - 70% de los neonatos debido a una elevada destrucción posparto de eritrocitos y debido a la función retardada de las enzimas para la degradación de la bilirrubina. Los métodos comunes de bilirrubina descubren tanto la bilirrubina total como la bilirrubina directa. Las determinaciones de la bilirrubina directa miden principalmente bilirrubina conjugada soluble en agua. La bilirrubina no conjugada puede, por lo tanto, ser estimada como la diferencia entre la bilirrubina total y la bilirrubina directa.

Método

Test fotométrico usando 2,4-dicloroanilina (DCA)

Principio

En solución acidificada y en presencia de 2,4-dicloroanilina diazotizada, la bilirrubina directa forma un azocompuesto coloreado rojo. Una mezcla específica de detergentes permita una determinación segura de la bilirrubina total.

Reactivos

Componentes y Concentraciones

R1:	Tampon fosfato	50 mmol/L
	NaCl	150 mmol/L
	Detergentes, estabilizadores	
R2:	Sal 2,4-Diclorofenil-diazonio	5 mmol/L
	HCI	130 mmol/L
	Detergente	

Instrucciones de Almacenamiento y Estabilidad del Reactivo

Los reactivos son estables hasta el final del mes indicado como fecha de expiración, si son almacenados entre 2 y 8 °C, y si se evita la contaminación. iNo congelar los reactivos! iEl reactivo 2 debe protegerse de la luz!

Advertencias y Precauciones

- 1. Reactivo 1 y reactivo 2: S24/25: Evítese el contacto con los ojos y la piel.
- Reactivo 1 R52/53: Nocivo para los organismos acuáticos, puede provocar a largo plazo efectos negativos en el medio ambiente acuático. S61: Evítese su liberación al medio ambiente. Recábense instrucciones específicas de la ficha de datos de seguridad.
- Consultar las fichas de de seguridad de los reactivos y tomar las precauciones necesarias para el uso de reactivos de laboratorio.

Manipulación de Desechos

Por favor remítase a los requerimientos legales locales.

Preparación del Reactivo

El reactivo y el estándar están listos para usar.

Materiales requeridos pero no suministrados

Solución de NaCl 9 g/L Equipo general de laboratorio

Tipo de muestra

Suero o plasma heparinizado

iEs muy importante guardar la muestra protegida de la

Estabilidad [3]: 1 día de 20 a 25 °C 7 días de 4 a 8 °C

7 dias de 4 a 8 °C 6 meses a -20 °C

iEn caso de congelación inmediata congelar sólo una vez! iDesechar las muestras contaminadas!

Procedimento del Ensayo

Hay disponibles a petición aplicaciones para sistemas automático.

Longitud de onda 546 nm (540 - 560 nm)

Paso Óptico 1 cm

Temperatura de 20 a 25 °C/37 °C Medida Respecto blanco de reactivo

	Blanco	Muestra/ calibrador
Muestra/calibrador	-	25 µL
Agua destilada	25 μL	-
Reactivo 1	1000 μL	1000 μL
Mezclar, incubar durante 5	5 min. a 37 ºC	o 10 min. entre
20 y 25 °C, leer la absorba	ancia A1, luego	añadir:
Reactivo2	250 µL	250 μL
Mezclar, incubar durante 5	5 min. a 37 ºC	o 10 min. entre
20 y 25 °C, luego leer la a	bsorbancia A2.	

 $\Delta A = [(A2 - A1 Muestra/calibrador]]$

Cálculo

Con calibrador

Bilirrubina [mg/dL] = $\frac{\Delta A \text{ Muestra}}{\Delta A \text{ Cal.}} \times \text{Conc Cal. [mg/dL]}$

Factor de conversión

Bilirrubina [mg/dL] x 17,1 = Bilirrubina [μ mol/L]

Calibradores y Controles

Para la calibración de sistemas fotométricos automatizados se recomienda el calibrador DiaSys TruCal U. Para el control de calidad interno deben ensayarse controles con DiaSys TruLab N y P con cada lote de muestras.

	Nº de pedido	Presentación
TruCal U	5 9100 99 10 063	20 x 3 mL
	5 9100 99 10 064	6 x 3 mL
TruLab N	5 9000 99 10 062	20 x 5 mL
	5 9000 99 10 061	6 x 5 mL
TruLab P	5 9050 99 10 062	20 x 5 mL
	5 9050 99 10 061	6 x 5 mL

Características

Rango de Medida

El test ha sido desarrollado para determinar las concentraciones de bilirrubina dentro de un rango de medición desde 0,1 – 30 mg/dL. Cuando los valores exceden este rango las muestras deben ser diluidas 1 + 1 con solución de NaCl (9 g/L) y el resultado multiplicado por 2.

Especificidad/Interferencias

No se observó ninguna interferencia con el ácido ascórbico hasta 30 mg/dL, hemoglobina hasta 500 mg/dL y lipemia hasta 2000 mg/dL de trígliceridos, cuando se ha medido utilizando un concentrado de triglicéridos y hasta 1000 mg/dL de triglicéridos cuando se mide utilizando Intralipid.

Sensibilidad /Límite de Detección

El límite más bajo de detección es de 0,07 mg/dL.

Precisión (a 37 °C)

En la serie	Valor medio	DE	CV
n = 20	[mg/dL]	[mg/dL]	[%]
Muestra 1	0,89	0,03	3,05
Muestra 2	1,02	0,02	2,32
Muestra 3	4,83	0,05	0,95

De un día a otro	Valor medio	DE	CV
n = 20	[mg/dL]	[mg/dL]	[%]
Muestra 1	0,87	0,02	2,74
Muestra 2	1,15	0,04	3,49
Muestra 3	4,65	0,13	2,86

Método de Comparación

Una comparación entre Bilirrubina Auto Total FS de DiaSys (y) y un test comercialmente disponible (x) utilizando 247 muestras dio los siguientes resultados: $y = 1,00 \times + 0,00$ mg / dL; r = 1,000.

Rango de Referencia [1]

		[mg/dL]	[µmol/L]
Neonatos	24 h	< 8,8	< 150
	al segundo día	1,3 - 11,3	22 - 193
	al tercero día	0,7 - 12,7	12 - 217
	del cuarto al sexto día	0,1 - 12,6	1,7 - 216
Niños	>1 mes	0,2 - 1,0	3,4 - 17
Adultos		0,1 - 1,2	1,7 - 21

Cada laboratorio debería comprobar la adecuación de los valores de referencia de sus propios grupos de pacientes y, dado el caso, determinar sus propios valores de referencia.

Literatura

- Thomas L ed. Clinical Laboratory Diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft, 1998. p. 192-202.
- Tolman KG, Rej R. Liver function. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 1999. p. 1125-77.
- Guder WG, Zawta et al. The Quality of Diagnostic Samples. 1st ed. Darmstadt: GIT Verlag; 2001; p. 18 – 9.
- 4. Rand RN, di Pasqua A. A new diazo method for the dtermination of bilirubin. Clin Chem 1962;6:570-8.

Fabricante

DiaSys Diagnostic Systems GmbH Alte Strasse 9 65558 Holzheim Alemania