

LDL Precipitante

Reactivo de precipitación para la determinación *In Vitro* de colesterol LDL en equipos fotométricos según el método CHOD-PAP

Información de Pedido

Nº de pedido	Contenido del envase	
1 4330 99 90 885	250 mL de reactivo de precipitación	
1 1350 99 10 021	R 5 x $25 \text{ mL} + 1 \text{ x } 3 \text{ mL estándar}$	
1 1350 99 10 026	R 6 x 100 mL	
1 1350 99 10 023	R 1 x 1000 mL	
1 1300 99 10 030	6 x 3 mL estándar	

Principio

Las lipoproteínas de baja densidad (LDL) se precipitan específicamente mediante la adición de heparina. Tras la centrifugación, la lipoproteínas de alta densidad (HDL) y las de muy baja densidad (VLDL) se quedan en el sobrenadante, donde se pueden determinar enzimáticamente por el método CHOD-PAP. La concentración de colesterol LDL se calcula a partir de la diferencia entre colesterol total y concentración de colesterol en el sobrenadante.

Reactivos

Componentes y Concentraciones

Heparina 100 000 U/L Citrato sódico 64 mmol/L

Conservación y estabilidad del reactivo

El reactivo se puede conservar a una temperatura entre 2 y 8 °C y el estándar entre 2 y 25 °C hasta el final del mes de caducidad indicado en el envase, siempre que se evite la contaminación una vez abiertos los frascos.

Advertencias v medidas de precaución

Consultar las fichas de seguridad de los reactivos y observar todas las medidas de precaución necesarias para la manipulación de reactivos de laboratorio.

Eliminación de residuos

Obsérvese la normativa legal al respecto.

Preparación del Reactivo

El reactivo de precipitación está listo para usar.

Equipo adicional necesario

Solución de 9 g/L Equipo usual de laboratorio

Muestra

Suero

Estabilidad [5]: 7 días de 20 a 25 °C 7 días de 4 a 8 °C 3 meses de -20 °C

iDesechar las muestras contaminadas!

Procedimento del Ensayo

Precipitación

Muestra

	Huestru	100 μΕ
Reactivo de precipitación		1000 µL
	Mezclar y dejar reposar 15 min. a temp	eratura ambiente;
	a continuación, centrifugar durante 2	20 min. a 2500 g.
	Dentro de las 2 horas posteriores al ce	ntrifugado, extraer
	0,1 mL del sobrenadante transparent	e para realizar el

El estándar de colesterol es diluido en una proporcion de $1+10\,$ con una solucion de NaCl (9 g/L). Después el estándar diluido está tratado como el sobrenadante.

Determinación del colesterol

Longitud de onda 500 nm, Hg 546 nm

Grosor de la capa 1 cm

análisis de colesterol.

Temperatura entre 20 y 25 °C, 37 °C

Método de medida con el valor de referencia del

reactivo (blanco de reactivo)

100 11

	Blanco	Muestra		
Sobrenadante	-	100 µL		
Estándar	100 µL	-		
Reactivo colesterol	1000 μL	1000 μL		
Mezclar, incubar a	temperatura amb	iente durante		
10 min. o a 37 °C	durante 5 min.;	antes de que		
transcurran 45 minutos, medir la absorbancia de la				
muestra o del estánd	lar comparando coi	n el blanco de		
reactivo.				

Cálculo

Colesterol en el sobrenadante

colesterol sobrenadan te [mg / dL] = $\frac{\Delta A \text{ muestra}}{\Delta A \text{ estándar}} \times \text{conc.estándar [mg / dL]}$

Como concentración estándar se emplea la concentración total de colesterol en el estándar.

Colesterol LDL

Colesterol LDL [mg/dL] =

Colesterol total [mg/dL] - Colesterol en el sobrenadante [mg/dL]

Controles

Para el control de calidad interno deben ensayarse controles con DiaSys TruLab N y P o TruLab L con cada lote de muestras.

	Nº de pedido	Tamaño del		l envase
TruLab N	5 9000 99 10 062	20	Х	5 mL
	5 9000 99 10 061	6	Х	5 mL
TruLab P	5 9050 99 10 062	20	Х	5 mL
	5 9050 99 10 061	6	Χ	5 mL
TruLab L	5 9020 99 10 065	3	Х	3 mL

Características

Rango de medida

El test resulta indicado para medir concentraciones de colesterol LDL hasta 400 mg/dL. Si se sobrepasan estos valores, es preciso diluir las muestras en una proporción 1:4 con solución de NaCl (9 g/L) y multiplicar por 5 el resultado.

Especificidad/Interferencias

No se presentan interferencias con bilirrubina hasta 30 mg/dL ni con hemoglobina hasta 800 mg/dL.

Sensibilidad/Límite de Detección

El límite inferior de prueba es de 2 mg/dL.

Precisión

en la serie n = 20	valor medio (VM) [mg/dL]	desviación estándar (DE) [mg/dL]	coeficiente de variación (CV) [%]
muestra 1	20	0,81	4,1
muestra 2	57	2,47	4,3
muestra 3	141	1,39	1,0

de un día a otro n = 10	valor medio (VM) [mg/dL]	desviación estándar (DE) [mg/dL]	coeficiente de variación (CV) [%]
muestra 1	62	1,90	3,0
muestra 2	131	2,80	2,1
muestra 3	283	2,09	0,7

Método de Comparación

En la comparación de mediciones de colesterol LDL con DiaSys reactivo de precipitación LDL (y) y con la fórmula de Friedewald (x) se obtuvieron los siguientes resultados con 49 muestras: $y = 1,121 \times -9,62 \text{ mg/dL}$; r = 0,947.

Valor de Referencia [4]

Colesterol LDL

valor ideal \leq 130 mg/dL (3,4 mmol/L) zona límite 130 -160 mg/dL (3,4 - 4,1 mmol/L) riesgo elevado > 160 mg/dL (> 4,1 mmol/L)

Cada laboratorio debería comprobar la adecuación de los valores de referencia de sus propios grupos de pacientes y, dado el caso, determinar sus propios valores de referencia.

Interpretación clínica [2]

Los estudios epidemiológicos han demostrado que las concentraciones bajas de colesterol HDL de < 39 mg/dL (0,9 mmol/L) en hombres y < 43 mg/dL (1,0 mmol/L) en mujeres, especialmente en presencia de triglicéridos en cantidades > 180 mg/dL (2 mmol/L), implican un incremento del riesgo de padecer enfermedades cardiovasculares. La "European Task Force on Coronary Prevention" recomienda bajar el colesterol total por debajo de 190 mg/dL (5,0 mmol/L) y el colesterol LDL por debajo de 115 mg/dL (3,0 mmol/L).

Bibliografía

- Rifai N, Bachorik PS, Albers JJ. Lipids, lipoproteins and apolipoproteins. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 1999. p. 809-61.
- Recommendation of the Second Joint Task Force of European and other Societies on Coronary Prevention. Prevention of coronary heart disease in clinical practice. Eur Heart J 1998;19: 1434-503.
- 3. Lopes-Virella MF, Stone P, Ellis S, Colwell JA. Cholesterol determination in high-density lipoproteins separated by three different methods. Clin Chem 1977;23.882-4.
- 4. Schaefer EJ, McNamara J. Overview of the diagnosis and treatment of lipid disorders. In: Rifai N, Warnick GR, Dominiczak MH, eds. Handbook of lipoprotein testing. Washington: AACC Press;1997.p.25-48.
- Guder WG, Zawta B et al. The Quality of Diagnostic Samples. 1st ed. Darmstadt: GIT Verlag; 2001. p. 22-3.

Fabricante

DiaSys Diagnostic Systems GmbH Alte Strasse 9 65558 Holzheim Alemania